Reflections on Symmetric Polynomials and Arithmetic Functions
نویسندگان
چکیده
منابع مشابه
Reflections on Symmetric Polynomials and Arithmetic Functions
Abstract. In an isomorphic copy of the ring of symmetric polynomials we study some families of polynomials which are indexed by rational weight vectors. These families include well known symmetric polynomials, such as the elementary, homogeneous, and power sum symmetric polynomials. We investigate properties of these families and focus on constructing their rational roots under a product induce...
متن کاملThe Convolution Ring of Arithmetic Functions and Symmetric Polynomials
Inspired by Rearick (1968), we introduce two new operators, LOG and EXP. The LOG operates on generalized Fibonacci polynomials giving generalized Lucas polynomials. The EXP is the inverse of LOG. In particular, LOG takes a convolution product of generalized Fibonacci polynomials to a sum of generalized Lucas polynomials and EXP takes the sum to the convolution product. We use this structure to ...
متن کاملA Representation of Multiplicative Arithmetic Functions by Symmetric Polynomials
We give a representation of the classical theory of multiplicative arithmetic functions (MF)in the ring of symmetric polynomials. The basis of the ring of symmetric polynomials that we use is the isobaric basis, a basis especially sensitive to the combinatorics of partitions of the integers. The representing elements are recursive sequences of Schur polynomials evaluated at subrings of the comp...
متن کاملIntroductions to Symmetric Polynomials and Symmetric Functions
Symmetric polynomials and symmetric functions are ubiquitous in mathematics and mathematical physics. For example, they appear in elementary algebra (e.g. Viete’s Theorem), representation theories of symmetric groups and general linear groups over C or finite fields. They are also important objects to study in algebraic combinatorics. Via their close relations with representation theory, the th...
متن کاملSymmetric Functions and Macdonald Polynomials
The ring of symmetric functions Λ, with natural basis given by the Schur functions, arise in many different areas of mathematics. For example, as the cohomology ring of the grassmanian, and as the representation ring of the symmetric group. One may define a coproduct on Λ by the plethystic addition on alphabets. In this way the ring of symmetric functions becomes a Hopf algebra. The Littlewood–...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2005
ISSN: 0035-7596
DOI: 10.1216/rmjm/1181069713